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The ubiquity of pyridine rings in natural and synthetic pharma-
ceutical compounds has been a driving force for developing
generalized methods for their synthesis. A particularly straightfor-
ward protocol is the transition metal mediated cycloaddition of
alkynes and nitriles. Although a variety of stoichiometric methods
have been describéd, catalytic systems have been restricted to
Fe, Rh, Co, and Ru complexgsJnfortunately, both the Fe and
Rh systems use elevated temperatures and afford more aren
byproducts than the desired pyridih€he versatility of Co catalysts
makes an attractive approach to pyridines; however, elevated
temperatures, photolytic conditions, and relatively high catalyst
loadings are typically requiretf In general, milder conditions are
employed with Ru catalystsNevertheless, substrates are currently
limited to activated nitriles (e.g., dicyanides).

Ni complexes catalyze a variety of cycloaddition reactibpest
a Ni-catalyzed route to pyridines remains elusive, which may be
due to an inability to generate a nickelapyrrole intermediate through
the oxidative coupling of alkynes and nitrilédnterestingly, the
requisite nickelacycle can be prepared via transmetalation betwee
an azazirconapyrrole and Ni(PfiCl, (Scheme 1%. Subsequent
addition of alkynes does ultimately afford asymmetrically substi-
tuted pyridines, albeit through the use of stoichiometric amounts
of both Ni and Zr.

Scheme 1. Stoichiometric Protocol for Pyridine Synthesis via
Nickelapyrrole Intermediate
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We have recently developed a general Ni/NHC (NHE
N-heterocyclic carbene) based catalyst system for the cycloaddition
of diynes and carbonyl substrates (£© isocyanated! and
aldehyde¥®). We surmised that this combination may be nucleo-
philic enough to promote oxidative coupling of an alkyne and nitrile

such that products possessing a pyridine ring could be obtained g

catalytically. At the onset of this research, it was not clear whether
cycloaddition or carbocyanatiéhof the alkyne would occur.
Furthermore, it was possible that the active Ni/NHC catalyst would
be incompatible with good donor ligands, such as nitHiesd
pyridines!> We now report that the combination of Ni/SIPr
effectively catalyzes the cycloaddition of diynes and nitriggs
ambient temperaturéo afford pyridines in excellent yields.

A variety of conditions were evaluated using diydeand
benzonitrile Ra) as model substrates for the cycloaddition reaction
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Gfeq 1). Ultimately, a protocol similar to the one found effective for

our previous cycloadditions afforded pyridirg!®-12 Excellent
yields (as determined using gas chromatography) were obtained
using 3% of Ni(COD), 6% of SIPr6 and diyne and nitrile
concentrations of 0.1 M in toluene at ambient temperature (eq 1).
With the optimized cycloaddition conditions at hand, we
examined pyridine formation with a range of diyne and nitrile
substrates (Table 1). In general, both aryl- and alkylnitriles were
readily converted to the respective pyridine, although alkylnitriles
gave slightly diminished yields. Both arylnitriles bearing either an
electron-withdrawing grouppfCFs, 2¢) or an electron-donating
group -OMe, 2b) readily cyclized (entries 2 and 3, respectivéefy).
Notably, sterically hindered nitriles [such egolunitrile (2d), tert-
butyl nitrile (2g), and naphthalene-1-carbonitrilgh)] delivered
the desired pyridines (entries 4, 7, and 8, respectively). Pyridine
yield was unaffected when degassed, but not dried, acetonitrile was
employed (entry 5). Diynes devoid of internal substitution, such
as 3,9-dodecadiynel®) and diynes containing either an internal
amino group 15) or the analogous ethelT), also coupled with
nitriles to give pyridines (entries 10L4). Importantly, heteroarylni-
triles are readily converted to pyridines in high yields (entry9).
In addition, the reaction of 2,9-undecadiyriZ0) afforded fused
seven-membered ring pyridirzl after cycloaddition (entry 15).
We also investigated pyridine synthesis from the cycloaddition
of an untethered alkyne. Subjecting 3-hexyne (2 equiv) and
benzonitrile ga) to the optimized conditions described above (3%
of catalyst, rt) afforded pyridin@2 in 82% vyield (eq 2)°
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Previously, when asymmetrically substituted diynes were used
in our Ni/NHC-catalyzed cycloaddition reaction, complete regio-
selectivity was observed when the size difference between terminal
substituents was lard&? In accordance with these observations,
the coupling of diyne23 and benzonitrile Za) afforded pyridine
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Table 1. Ni-Catalyzed Cycloaddition of Diynes and Nitriles@
Entry  Diyne Nitrile Product, % Yield®
MeOzC: < — @CN MeO,C =z |N

- \
Me0,C~ V== RA_1 MeO,C N Ayl
1 1 2aR=H 3, 86%
2 2b R = p-MeO 4,64%
3 2¢ R = p-CFj 5, 94%
4 2d R = o0-Me 6, 81%,
MeO,C Z N
|
MeO,C X Alkyl
5 1 2e MeCN 7,69% (69%)°
6 1 2f j-BuCN 8,72%
7 1 2g t-BuCN 9, 56%
MeO,C Z "N
o O O
MeO,C O
2h 10, 91%
N/ MeO,C Z "N
9 1 | /
UCN MeO,C x N
W)
2i 11, 97%
Et
——Ft = |N
— YR
_ Et
10 12 2a 13 R =Ph, 92%
11 12 2e 14 R = Me, 46%
—— Z N
X XA
R R
12 15X =NTs 2a 16 R = Ph, 78%
13 17X=0 2a 18 R = Ph, 93%
14 17X=0 2e 19 R = Me, 37%
< _ =
16 2e |N
— AN
20 21, 29%

aReaction conditions: 0.1 M diyne, 0.1 M nitrile, 3% of Ni(CQD)
6% of SIPr, rt.bIsolated yields (average of two runs)solated yield of
reaction with MeCN that was degassed, but not dried.

24 as a single regioisomer in 58% yield (eq 3). Initial oxidative
coupling of the TMS-terminated alkyne and nitrile followed by
insertion of the methyl-terminated alkyne explains the observed
regioselectivity.

In conclusion, we have developed a mild and efficient method
for preparing a wide range of pyridines from alkynes and nitriles.

Both intramolecular and intermolecular reactions were catalyzed
by a combination of a Ni(0) precursor and an imidazolylidene
ligand. Furthermore, cycloaddition of an asymmetrical diyne
afforded a single pyridine regioisomer.
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